Two-Dimensional Shape Optimization with Unstructured Meshes

Arron Melvin
Advisor: Luigi Martinelli
Princeton University

FAA/NASA Joint University Program for Air Transportation

Quarterly Review MIT October 18, 2002

Motivation for Automatic Design

- Aerodynamic development typically "cut&try"
 - Slow (design time doing detailed design iterations)
 - Expensive
 - Relies on physical insight of designer for changes
- Automatic design to reduce time in detail design phase
 - Improved performance
 - Decreased costs

Aerodynamic Shape Optimization

- Large number of design variables necessary for complete aircraft
- Control theory gradient requires only the solution of an adjoint system
- Gradient calculation independent of the number of design variables

Design Procedure

- 1. Solve the flow equations for \mathbf{r} , \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{p}
- 2. Solve the adjoint equations for y subject to appropriate boundary conditions
- 3. Evaluate the gradient G
- 4. Project G into an allowable subspace that satisfies any geometric constraints
- 5. Update the shape based on the direction of steepest descent
- 6. Return to step 1 until convergence is reached

Euler Flow Solver/Design Code SYN75

- 2D compressible inviscid fluid flow
- Finite volume
- Explicit multistage scheme of Jameson
- Multigrid time stepping scheme of Jameson
- Adjoint formulation for design problem
- General triangular mesh
- Equivalent to Galerkin finite element method

Governing Equations

Euler equations for flow of a compressible inviscid fluid in integral form:

$$\frac{\partial}{\partial t} \iiint_{\Omega} \mathbf{w} d\Omega + \iint_{\partial \Omega} \mathbf{F} \cdot d\mathbf{S} = 0$$

mass

$$\mathbf{w} = \rho$$

$$\mathbf{F} = (\rho u, \rho v)$$

momentum (for x)

$$\mathbf{w} = \rho u$$

$$\mathbf{F} = (\rho u^2 + p, \rho uv)$$

energy

$$\mathbf{w} = \rho E$$

$$\mathbf{F} = (\rho Hu, \rho Hv)$$

$$E = \frac{p}{(\gamma - 1)\rho} + \frac{1}{2}(u^2 + v^2)$$
 Equation of State

Governing Equations

Previous equations are solved for each CV in computational domain

$$\frac{d}{dt}(\mathbf{V}_i)\mathbf{w}_i + \sum_k \mathbf{R}_k = 0$$

Flux contributions across interior faces cancel

$$\frac{d}{dt}(\mathbf{V}_i)\mathbf{w}_i + \sum_k \mathbf{F}_k \cdot \mathbf{S}_k = 0$$

Control Volume for node i

Artificial Dissipation

Central differencing of the convective flux term allows oscillation of the solution due to even-odd decoupling

A,B,C constant but distinct

Add dissipation terms to the Euler fluxes

Integration In Time Multistage Scheme

Jameson's Runge-Kutta method for a m-stage scheme:

$$\mathbf{w}^{(0)} = \mathbf{w}^{n}$$

$$\mathbf{w}^{(k)} = \mathbf{w}^{(0)} - \alpha_k \Delta t \frac{1}{V} R(\mathbf{w})^{k-1} k = 1, 2, 3, \dots m$$

$$\mathbf{w}^{(n+1)} = \mathbf{w}^{m}$$

Convergence Acceleration

- Time step constraint for explicit schemes is too restrictive
- Convergence can be enhanced by
 - Local time stepping
 - Multigrid

Multigrid

- Coarse meshes are used to estimate the correction to the residual calculated on the fine mesh
- For minimal extra computational cost and memory, convergence rates are increased by an order of magnitude

 First utilized for Euler equations on an unstructured grid by A. Jameson

Multigrid: Fine Grid

Fine mesh 160x32 points (view of partial mesh)

Trailing edge detail

Multigrid: Coarse Grids

SYN75 Results

RAE drag minimization Initial solution $C_D=0.0062$

SYN75 Results

RAE drag minimization 15 design cycles $C_D=0.0029$

Computational Requirements

- 2D few design variables
 - Single processor
- 3D large number of design variables
 - Serial computational time excessive
 - Parallel
 - Distribute work spatially: Domain Decomposition

Conclusion

- Adjoint formulation on unstructured mesh implemented
- Two-Dimensional unstructured mesh design tested

Work Plan

- Continue to develop 2D code
- Extend to 3D
 - Flow & adjoint solvers are in place (Jameson & Martinelli)
 - Write gradient formulation
- Shape modification
 - More general than point movement
 - Integration with CAD
- Pass Generals

